

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

alia - A Library for Interactive Applications

[image: _images/badge.svg]MSVC Build Status [https://github.com/tmadden/alia/actions]
[image: _images/badge1.svg]GCC Build Status [https://github.com/tmadden/alia/actions]
[image: _images/badge2.svg]Clang Build Status [https://github.com/tmadden/alia/actions]
[image: _images/badge3.svg]Code Coverage [https://codecov.io/gh/tmadden/alia]
[image: _images/C++-17-blue.svg]C++ Support
[image: _images/stability-unstable-yellow.svg]Stability [https://github.com/orangemug/stability-badges#unstable]

alia (pronounced uh-LEE-uh) is a modern C++ library for developing interactive
applications in a declarative manner. In alia, the UI of your application is
expressed as a composition of component functions.

alia component functions:

	are backed by data - alia tracks the control flow of your component-level
code so that it can maintain data corresponding to each of your individual
component function calls. This mechanic can be used to synchronize widget
objects, cache computed results, or maintain local state where you need it.

	are self-contained - Although from an external perspective, alia component
functions compose just like normal functions, they are more like classes in
their capabilities. They can maintain internal state and respond to events
where needed. This means that the full description of a UI component can be
localized to one piece of (declarative) code.

	naturally react to changes in application state - alia enables you to use
the familiar mechanics of conditionals, loops, and functional composition to
model your UI as a function of application state so that your UI naturally
reflects the current state of your application.

	use dataflow semantics - alia provides tools for modeling the computations
in your application as a declarative flow of data. This flow favors the use of
pure functions and naturally supports caching and ‘unready’ values (values
that are waiting for user inputs, background calculations, remote queries,
etc.).

alia is agnostic to the particular UI library you use. It provides the
mechanics for modeling an interactive application declaratively and is
designed to hook up to other libraries so that your application can drive those
libraries declaratively. (And it should be capable of driving any interactive
system: a game, a physics simulation, etc.)

STABILITY/MATURITY WARNING: This is the first public release of alia, so
it’s likely unstable and definitely incomplete. It’s going to require some
work/patience on your part to use it. See ‘Project Status’ below for details.

Check out the documentation [https://alia.dev] for more info.

An Example

Below is a simple tip calculator made using alia and an experimental
asm-dom [https://github.com/mbasso/asm-dom] wrapper. You can see it in action

here, along with some other examples.

void
tip_calculator(dom::context ctx)
{
 // Get some component-local state for the bill amount.
 auto bill = alia::get_state(ctx, empty<double>());
 dom::text(ctx, "How much is the bill?");
 // Display an input that allows the user to manipulate our bill state.
 dom::input(ctx, bill);

 // Get some more component-local state for the tip rate.
 auto tip_rate = alia::get_state(ctx, empty<double>());
 dom::text(ctx, "What percentage do you want to tip?");
 // Users like percentages, but we want to keep the 'tip_rate' state as a
 // rate internally, so this input presents a scaled view of it for the user.
 dom::input(ctx, scale(tip_rate, 100));
 // Add a few buttons that set the tip rate to common values.
 dom::button(ctx, "18%", tip_rate <<= 0.18);
 dom::button(ctx, "20%", tip_rate <<= 0.20);
 dom::button(ctx, "25%", tip_rate <<= 0.25);

 // Calculate the results and display them for the user.
 // Note that these operations have dataflow semantics, and since `bill` and
 // `tip_rate` both start out empty, nothing will actually be calculated
 // (or displayed) until the user supplies values for them.
 auto tip = bill * tip_rate;
 auto total = bill + tip;
 dom::text(ctx,
 alia::printf(ctx,
 "You should tip %.2f, for a total of %.2f.", tip, total));

 // Conditionally display a message suggesting cash for small amounts.
 alia_if (total < 10)
 {
 dom::text(ctx,
 "You should consider using cash for small amounts like this.");
 }
 alia_end
}

Project Status

alia as a concept is actually fairly mature and has been used successfully in a
few major internal desktop applications. This open-source release is an early
version in the latest generation of alia. This generation brings about two major
changes:

	The core mechanics have far better documentation and testing, plus some minor
improvements to interfaces and terminology.

	Everything but the core mechanics has been stripped out. - Earlier
generations of alia were immediate mode GUI libraries (like Dear
ImGui [https://github.com/ocornut/imgui]), but over the years, it became
clear that the actual GUI code was no longer a novel feature and that to do
it properly essentially required writing a traditional, “retained-mode” GUI
library with a declarative wrapper around it, so this version of alia focuses
solely on the declarative wrapper part.

This generation is still new and hasn’t been used yet in any major projects.
While the mechanics should be fairly robust, I’m still in the process of
experimenting with hooking it up to other libraries and developing realistic
integrations for my own purposes. At the moment, I provide experimental/example
integrations with asm-dom and Qt, but I have no immediate plans of providing
“official” integrations for any external libraries.

So at this point, if you’re interested in using alia in anything resembling a
real project, it will require some work on your part to hook it up to the
libraries you need for user interfaces, rendering, etc. This release is
intended for people who’d like to play around with it, provide feedback, and
perhaps try integrating it with their favorite UI/game/physics library.

If you’re interested in sharing your integrations, I’m more than happy to
incorporate them as examples and/or link people to your projects.

Getting Started

Continue on to the full
documentation for more info.

Experimental Qt Wrapper

This is an experimental wrapper for Qt. It’s intended as a proof of concept, an
illustration of how you might create an actual wrapper, and to allow you to play
around with alia. This is not intended for real use.

If you’re interested in seeing the actual wrapper code, check out the files
adaptor.hpp and adaptor.cpp.

Building

	Clone this repository and change to this directory:

git clone https://github.com/tmadden/alia
cd alia/examples/qt

	Get a copy of alia.hpp:

wget https://alia.dev/alia.hpp

	Create a build directory:

mkdir build
cd build

	Either install Qt directly or use Conan to install it:

conan install ..

	Build the project:

cmake ..
cmake --build .

(Or on Windows, you might need to explicitly specify a generator…)

cmake -G"NMake Makefiles" ..
cmake --build .

The Sandbox

This produces a sandbox executable. You can edit sandbox.cpp to play
around with the contents of the sandbox.

 This directory is just a stub. It’s populated during CI testing to ensure that
testing also passes against the single-header distributable form of alia.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

